Error estimates for stabilized finite element methods applied to ill-posed problems

نویسنده

  • Erik Burman
چکیده

We propose an analysis for the stabilized finite element methods proposed in [2] valid in the case of ill-posed problems for which only weak continuous dependence can be assumed. A priori and a posteriori error estimates are obtained without assuming coercivity or inf-sup stability of the continuous problem. Résumé Estimations d’erreurs pour des méthodes d’éléments finis stabilisées appliquées à des problèmes mal-posés. Dans cette note nous proposons une nouvelle analyse pour les méthodes d’éléments finis stabilisées introduites dans [2], appliquées a des problèmes mal-posés avec des propriétées de dépendance continue faibles. Nous obtenons des estimations a priori et a posteriori sans supposer ni coércitivitée ni stabilité inf-sup de la forme bilinéaire du problème continue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Stabilized Finite Element Method for Advection–Diffusion Equations on Surfaces∗

A recently developed Eulerian finite element method is applied to solve advectiondiffusion equations posed on hypersurfaces. When transport processes on a surface dominate over diffusion, finite element methods tend to be unstable unless the mesh is sufficiently fine. The paper introduces a stabilized finite element formulation based on the SUPG technique. An error analysis of the method is giv...

متن کامل

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

Lavrentiev regularization + Ritz approximation = uniform finite element error estimates for differential equations with rough coefficients

We consider a parametric family of boundary value problems for a diffusion equation with a diffusion coefficient equal to a small constant in a subdomain. Such problems are not uniformly well-posed when the constant gets small. However, in a series of papers, Bakhvalov and Knyazev have suggested a natural splitting of the problem into two well-posed problems. Using this idea, we prove a uniform...

متن کامل

Stabilization Methods in Relaxed Micromagnetism

The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential u and magnetization m. In [C. Carstensen an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014